Зрение медоносной пчелы

Зрение медоносной пчелы

  • Какое строение имеют глаза пчелы?
  • Особенности глаз у матки, трутня, рабочей пчелы
  • Механизм зрения пчелы
  • Расположение и количество глаз у пчелы
  • Почему именно столько глаз?
  • Цветовое восприятие мира глазами пчел
  • Видят ли пчелы в темноте?
  • Что будет, если ослепить пчелу ярким светом?

Какое строение имеют глаза пчелы?

На необычный вопрос о том, так сколько глаз у пчелы, сразу отвечаем: «Всего пять глаз, 3 — простых, и 2 — сложных, состоящих из фасеток». Пчелы имеют сложное устройство зрительной системы. Она объединяет различные органы зрительного аппарата, которые отвечают за выполнение определенных функций.

Такие органы помогают пчелкам ориентироваться в пространстве, компенсируют недостаточную освещенность, позволяют почувствовать запах цветения на расстоянии до 1 км. Они не только отвечают за восприятие окружающей обстановки, но и выполняют дополнительные функции. У медоносной пчелы-труженицы по бокам головы можно обнаружить глаза сложного строения. Они образуются огромным количеством специальных ячеек. Их называют фасетками. Пчелы видят окружающую их обстановку в виде мозаики, которая состоит из мельчайших частиц. Каждая фасетка отвечает за формирование своей части картинки.

Особенности глаз у матки, трутня, рабочей пчелы

Если сравнить зрительные органы пчел разного класса, то обнаружатся различия. У рабочей пчелы простые глазки расположились на темени. В отличие от нее, у трутня и пчеломатки такие органы находятся непосредственно на лбу. У насекомых имеется разное количество фасеток (омматидиев). У пчеломаток их число нередко достигает 4 000 шт., у рабочих пчел — 5 000 шт., у трутней — 9 000 шт.

Фасеточные глаза прекрасно видны именно у трутней, поскольку они сходятся на темени. У пчелиной матки, рабочей пчелы сложно различить эти зрительные органы при поверхностном взгляде. У всех описываемых насекомых простые оцелли имеют примитивное устройство. Это специальные прозрачные линзы, они значительно выступают из головы. Каждая из них по отдельности фиксирует изображения.

Видео: Как видят пчелы

Механизм зрения пчелы

При внимательном рассмотрении фасеточных глаз с использованием увеличительной лупы вы заметите шестигранное тиснение на поверхности каждого органа. Из-за такого специфического тиснения глаза зачастую называют сетчатыми. Любая из фасеток представляет собой пучок, который состоит из клеток, имеющих вытянутую форму, тонкую кайму. Между соседними глазками находятся специальные пигментные клетки.

Наличие тысяч фасеток не обеспечивает пчелкам хорошее зрение. Вне зависимости от условий внешней среды, изображение объектов остается недостаточно четким. Оно разделено на отдельные точки. Особое устройство бинокулярной системы накладывает свои ограничения. Доказано, глаза пчелок больше приспособлены к восприятию объектов, которые находятся в движении, в состоянии полета. Зрение плохо справляется с восприятием предметов, которые являются неподвижными, не изменяют своего места нахождения.

Визуальная информация, которую пчелы воспринимают с помощью глаз, моментально преобразуется в нервные импульсы. Они незамедлительно поступают в мозг. Там происходит сначала анализ, а потом обработка поступившей информации. После генерирования ответа центральным отделом нервной системы происходит передача сигнала периферийным органам. Зрение насекомых характеризуется объемностью и нечеткостью картинки.

Расположение и количество глаз у пчелы

Вне зависимости от классовой принадлежности насекомого (рабочая пчела, трутень, пчеломатка), оно имеет пять глаз. На голове любой особи располагаются:

  • три маленьких дорсальных глазка (оцелли);
  • два глаза большого размера, имеющие сложное строение.

Глаза второго типа называются фасеточными, поскольку они находятся по бокам головы, образованы из огромного количества фасеток. Такие органы зрения имеют продолговатую форму. Они представляют собой выпуклости, которые направлены вниз.

Фасеточные глаза образуются из омматидиев — это структурные единицы. Они плотно располагаются, соседние омматидии тесно прилегают друг к другу. Каждая из таких функциональных единиц, входящих в состав фасеточного органа, имеет преломляющую, изолирующую и воспринимающую часть.

Интересно, что размер каждого глаза медоносной пчелы составляет в среднем 2 миллиметра. Причем количество глазок остается неизменным для каждой особи. Самую значительную площадь имеют зрительные органы трутней, второе место по этому критерию занимают рабочие особи, а замыкают список матки.

Почему именно столько глаз?

У трудолюбивых пчелок изначально слабо развит зрительный аппарат. Чтобы компенсировать недостаточно развитое зрение, природа наделила их несколькими органами зрения. Целых пять глаз позволяют этим насекомым ориентироваться в окружающей обстановке, получать сведения о цветении растений, видеть различные объекты. Большие глаза помогают видеть предметы, формировать целостную картину происходящего вокруг насекомого.

Дорсальные органы (оцелли) отвечают за сумеречное зрение. Они помогают пчелам узнавать о приближении рассвета и наступлении нового дня, а также безошибочно получать информацию о его окончании. Оцелли частично замещают осязание, в составе бинокулярной системы они имеют второстепенную функцию. Фасеточные органы формируют изображения в виде мозаики, которая состоит из отдельных точек и помогает получить целостное представление о предметах.

Фасеточные глаза со сложным строением используются в качестве основного звена зрительного аппарата. В отличие от них, простые глазки считаются второстепенным звеном. Они предоставляют пчелкам объективную информацию об окружающем пространстве.

Цветовое восприятие мира глазами пчел

Такие насекомые различают многие цвета и оттенки. Только они не воспринимают красный цвет, не могут отличить его от черного. Кстати именно поэтому все зимние осмотры пчел проводятся с использованием фонаря красного цвета, пчелы не видят света, а значит меньше беспокоятся. Изображения окружающего мира у пчел формируются в ультрафиолетовом спектре.

Видео: Вот так видят пчёлы

Лучше всего взрослые особи воспринимают оттенки белого, синего и желтого цвета. Зрение взрослых особей можно назвать мозаичным. При формировании изображения их мозг проделывает большую работу. Весь процесс выглядит следующим образом:

  • Каждая из тысяч фасеток воспринимает только одну часть какого-либо предмета, а не целиком весь объект.
  • Мозг обрабатывает поступающие изображения с запечатленными отдельными частями предмета.
  • В мозгу происходит слияние отдельных частей объекта, в результате пчелы-труженицы воспринимают картинку целиком.

Пчелки не видят особенной разницы между оранжевым, зеленым, салатовым и желтым цветами. Зрительный аппарат пчелок обладает способностью воспринимать поляризованный свет. Это качество позволяет насекомым спокойно ориентироваться в пространстве.

Видят ли пчелы в темноте?

Пчелки отлично видят в полной темноте. Они могут ориентироваться по электромагнитному полю земли. Встречаются особи, которые предпочитают вести ночной образ жизни. В темноте пчелки различают не только цветы, но и безошибочно определяют дорогу, ведущую домой. Зрительная система этих насекомых прекрасно адаптировалась к условиям недостаточного освещения. Полеты в полной темноте не создают проблемы пчелам, которые могут спокойно вернуться в родной улей глубокой ночью.

Видео: Взгляд на пасеку глазами пчелы

Стоит отметить, что пчелы-труженицы редко летают в темноте, за редким исключением. Это вызвано не только необходимостью ночного отдыха, но и понижением напряженности электромагнитного поля. Такой фактор способствует нарушению ориентации в пространстве у пчелок, поэтому они в основном предпочитают не совершать полетов в ночное время суток. Опытным путем удалось выяснить, что эти насекомые способны различать формы предметов.

Что будет, если ослепить пчелу ярким светом?

Если пролетающую мимо пчелу ослепить вспышкой яркого и направленного света, то она просто упадет, потеряет ориентацию. Такой эксперимент сильно навредит насекомому, которое приносит значительную пользу. Поэтому не ослепляйте пчелку. Ее зрительные органы не способны обработать слишком яркий и сильный свет. Ослепленная, ошеломленная пчела-труженица не сразу приходит в себя после воздействия вспышки света. Она взлетает через определенное время, чтобы продолжить свой путь.

Последние исследования установили близорукость фасеточных органов медоносных пчел. Эти трудяги отчетливо видят предметы, которые находятся на близком расстоянии. Чем дальше находится объект, тем труднее пчелкам разглядеть их детально, составить свое представление о них. На расстоянии, превышающем 50 см, насекомые замечают только те предметы, которые движутся. Лучше всего медоносные пчелы видят на расстоянии в несколько сантиметров.

Последние добавленные статьи о пчёлах и пчеловодстве:

«Пчёлы видят намного лучше, чем мы думали. Именно к такому выводу пришли учёные из университета Аделаид .
Выводы пришли из проведённого теста зрения, который проводился над европейскими пчёлами apis mellifera. Зрение пчёл является предметом исследований с 1914 года. с тех пор стало ясно, что пчёлы способны видеть цвета, а их зрительная модель стала интересовать в особенности учёных неврологов.
Среди других интересных вещей, то, что пчёлы помогают ответить на такие вопросы как: как крохотный мозг, состоящий из менее миллиона нейронов выполняет сложные процессы, и каковы его ограничения? За последние десятилетия стало ясно, что пчёлы могут видеть и категоризировать предметы, а также различать такие понятия как «симметричность» и «над и под».
Но вот самый волнующий вопрос: какова острота зрения этих маленьких созданий?
Все предыдущие исследования были проведены в относительно тёмных условиях. Дневной свет и свет в лабораториях – это две совершенно разные среды, которые влияют как на анатомические так и физиологические изменения возможностей глаза.
Фоторецепторы зрительной системы обнаруживают вариации интенсивности цвета. За каждой шестиугольной фасеткой сложного пчелиного глаза находятся 8 фоторецепторов, а сам глаз состоит из тысячи фасеток! вот почему учёные были уверены, что результаты тестов в лаборатории будут разительно отличаться от результатов при свете солнца.
Также был поставлен вопрос о том, какой самый маленький предмет, который пчёлы способны различать, и как далеко пчёлы могут видеть, даже если не отчётливо.
Чтобы ответить на эти вопросы, исследователи воспользовались электрофизиологической записью нейронных импульсов, которые возникают в одном фоторецепторе пчелоглаза. Фоторецепторы являются детекторами света в сетчатке глаза, и каждый раз, когда объект попадает в поле зрения пчелы, подается нейронный импульс.
Как оказалось, зрение пчелы при свете дня, на солнце, на 30% лучше, чем при искусственном освещении.
Что касается самого маленького предмета, который может идентифицировать пчела – 0.6- одна треть ширины вашего большого пальца в размере вашей руки. Это треть того, что пчела может отчётливо видеть. И по сравнению с предыдущими поведенческими исследованиями, оказывается, пчела может видеть предметы в пять раз меньше!
Результаты исследования дают понять, что пчела имеет возможность увидеть врага, и значит, избежать его, значит, она лучше различает местные ландшафтные особенности, лучше в них ориентируется что способствует ее выживанию.
Это исследование не только открывает нам больше информации о пчёлах, но, как говорят сами учёные университета, даёт варианты конструирования зрения роботов, что может употребляться в роботехнике.

В какой мере при правильном выборе окраски пчелы используют этот опознавательный знак своего улья для ориентировки, можно решить не путем рассуждений, а только при помощи опытов.

Рис. 63. Использование пчелами цвета улья для ориентировки.

а — обычный порядок расположения ульев, к которому привыкли пчелы. Улей № 4 обитаем и закрыт синим щитом, № 5 пуст и закрыт желтым щитом, № 2 и 3 не закрыты щитами (имеют белую окраску) и тоже пустые.

Жестяные щиты с обратной стороны выкрашены: синий — в желтый цвет, а желтый — в синий цвет;

б — повернув щит на улье № 4, его окраску превращают в желтую, щит с улья № 5, тоже перевернув и превратив в синий, перевешивают на улей № 3. Все возвращающиеся домой пчелы летят в незаселенный, теперь получивший синюю окраску улей № 3.

Для этой цели подходит большой павильон, ульи которого совершенно одинаковы по внешнему виду. С одной стороны этого павильона поставим рядом несколько пустых ульев. На переднюю стенку одного из них повесим большой синий щит из жести и такую же жестяную

пластинку синего цвета положим на прилетную дощечку (рис. 63, а, улей № 4). Правый соседний улей № 5 снабдим таким же образом желтой облицовкой, а соседний улей слева оставим без изменения, то есть таким же белым, как и все остальные ульи этого павильона.

Теперь поселим в синий улей семью пчел и выждем несколько дней. Синий, желтый и белый цвета пчелиные глаза различают хорошо. Если вылетающие пчелы действительно используют предложенный им синий цвет для распознавания своего улья, то можно ожидать, что, переменив местами жестяные щиты, мы заставим пчел залетать в чужое жилище.

При этом, однако, необходима следующая предосторожность. На синий жестяной щит обитаемого улья, особенно на маленькую жестяную пластинку на прилетной дощечке, в эти дни садилось бесчисленное множество пчел, покидавших улей и возвращавшихся в него. Жестяные листы приобрели запах пчел, который отчетливо может обнаружить и человек.

Если бы мы перевесили синие листы жести на соседний улей и пчелы после этого полетели бы в пустой синий улей, то было бы невозможно выяснить, руководствуются ли они синей окраской улья или запахом. Поэтому обратную сторону синих листов жести окрасили в желтый цвет, а обратную сторону желтых — в синий. Теперь для того, чтобы изменить окраску улья, не надо менять листы местами, а достаточно повернуть их другой стороной.

Так как подлетающие пчелы обращают внимание также и на соседние ульи, то для того, чтобы положение синего улья по отношению к окраске соседних ульев не изменилось, на обитаемом улье №4 повернем листы жести другой стороной и превратим его из синего в желтый. Жестяные листы с правого соседнего улья снимем, и, повернув их, перевесим на левый соседний улей, который благодаря этому станет синим. Таким образом, сохранится порядок расположения окрашенных ульев относительно белого улья, к которому привыкли пчелы: слева от синего улья будет стоять белый, а справа — желтый.

Результат изменения окраски поразительный: весь поток возвращающихся домой пчел, которые за короткое время, потребовавшееся, чтобы перевесить жестяные листы, скопились перед павильоном, не колеблясь ни секунды, направляется в пустой улей. Нет сомнения, что пчелы введены в заблуждение его синей окраской. Это длится несколько минут (рис. 63, б). Все улетающие пчелы выходят из желтого улья, а возвращающиеся домой летят в пустой синий улей. Из этого опыта ясно решающее значение окраски ульев для ориентировки пчел на пасеке.

То, чему учит нас опыт, подтверждается и повседневной практикой. Если ульи на пасеке окрашены в такие цвета, которые глаза пчел хорошо различают, пчелы ошибаются гораздо реже. Достаточно снова пометить несколько сот пчел из одного улья цветными точками, чтобы убедиться, что в течение многих дней и даже недель они возвращаются только в свой улей.

Легче найти свой улей и матке при возвращении с брачного или с ориентировочных облетов. На большой, образцовой пасеке верхне баварского монастыря святой Оттилии с 1920 года добросовестно ведется книга регистрации всех маток. В 1920 и 1921 годах ульи еще не были окрашены в разные цвета. За эти 2 года потерялось 16 молодых маток из 21. В последующие 5 лет после того, как все ульи были выкрашены с учетом особенностей цветного зрения пчел, из 42 молодых маток пропали всего 3.

Итак, пчеловод должен принять во внимание следующее: пчелы хорошо различают синий, желтый, черный и белый цвета, и поэтому следует ограничиться ими при окраске ульев. Следует позаботиться о том, чтобы в одном ряду между двумя одноцветными ульями стояло по крайней мере два улья, окрашенных в другие цвета. Окраска ульев слева и справа от улья уже встречавшегося ранее цвета не должна повторять предыдущую цветовую комбинацию, потому что цвета соседних ульев и их расположение по отношению к родному улью также служат ориентирами для пчел. Нецелесообразно окрашивать только прилетные дощечки, необходимо красить всю переднюю стенку улья. Это облегчает пчелам ориентировку при возвращении в жилище настолько, насколько позволяют наши познания (рис. 64).

Рис. 64. Пример целесообразного порядка расположения цветов при окраске ульев, облегчающего пчелам отыскивание их жилища. Вместо черного можно выбрать ярко-красный, который пчелам кажется черным. (Синие ульи заштрихованы в клетку, желтые обозначены горизонтальными линиями.)

Можно несколько расширить набор красок, приемлемых для окрашивания ульев, используя свинцовые и цинковые белила. Обе эти «белые» краски для нашего глаза одинаковы. Но если свинцовые белила очень сильно отражают невидимые для нас ультрафиолетовые лучи, то цинковые белила поглощают их. Вследствие этого свинцовые белила должны и пчелам казаться «белыми»; потому что они равномерно отражают все видимые для пчел лучи света. Цинковые белила (так же как и белые цветы) должны казаться пчелам голубовато-зелеными. И действительно, опыты показали, что обе эти краски отличаются одна от другой. Мы не советуем применять другие белые краски, так как они не полностью поглощают и не полностью отражают ультрафиолетовые лучи.

Какого цвета они кажутся пчелам, решить трудно. Неудачи многих пчеловодов при окрашивании ульев в белый цвет вызваны, возможно, применением красок, оценка восприятия которых пчелами пока еще неясна. Вероятно, позднее обнаружится какая-нибудь краска, которая воспринимается пчелами как ультра фиолетовая. Этот вопрос требует дальнейшего изучения и практической проверки.

Цвет — не единственное средство ориентировки пчел. Если ульи не окрашены, пчелы ориентируются по расстоянию от их жилища до ближайшего угла павильона или по другим зрительным приметам. Но прежде всего они руководствуются запахом собственной семьи.

Большое значение имеет также запах, распространяющийся от пахучего органа рабочей пчелы. Пчелы удивительным образом пользуются этим органом у своего улья, как только необходимость отметить жилище становится особенно важной, например в первые теплые дни ранней весны, когда представление о положении родного улья за период долгого зимнего покоя уже успело утратиться или после поселения роя в новое жилище. В таком случае пчелы стоят в летке и на прилетной дощечке, повернув в сторону летка головы и подняв вверх брюшко. Они выпячивают пахучую железу и, вибрируя крыльями, направляют распространяющийся от нее запах навстречу прилетающим товарищам (рис. 65).

Рис. 65. «Виляющие хвостиками» пчелы. Сидящие поблизости от летка пчелы обозначают место, где они побывали, при помощи запаха, выделяемого их пахучими железами. Размахивая крыльями, они создают воздушный поток, который гонит запах навстречу возвращающимся домой подругам.

«Пчелы виляют хвостиками»,— говорят немецкие пчеловоды. Запах, издаваемый при этом, одинаков у различных семей, следовательно, он как бы предупреждает «здесь есть пчелы», а не «здесь твоя семья». Безусловно, в естественных условиях расселения пчел в дуплах высоких деревьев пчелиный запах был пчелам нужнее, чем на наших пасеках, где семьи противоестественно сосредоточены в одном месте, как квартиры в домах большого города. Таким образом, не принимая во внимание зрительных ориентиров, пчелы могут убедиться хотя и по более слабому, но зато знакомому запаху своего улья, что находятся у ворот родного дома. Этот ульевый запах в зависимости от видов приносимого в него нектара, пыльцы и многих других, пока еще мало изученных компонентов, имеет свой особый характер, так же как для людей с тонким обонянием — запах каждого человеческого жилища.

Матковыводные пчелохозяйства при нарушении правил размещения нуклеусных парков терпят большие убытки, поскольку при возвращении из брачного полета матки часто теряются. Для сокращения их блужданий размещают дополнительные наземные ориентиры возле нуклеусных ульев, а также окрашивают их в различные цвета или наносят рисунки различных форм и цветов. Поэтому очень важно знать, какие именно цвета матки различают. Изучение их цветового зрения в естественных условиях достаточно сложно, так как они вылетают из гнезда только несколько раз в жизни. Значительно легче эти исследования выполнять на пчелах, поэтому их цветовое зрение достаточно хорошо изучено.

Со времени проведения опытов Фиша (1914) и Кюна (1927), связанных с поведением насекомых, доказано, что пчелы хорошо различают четыре области спектра: желтую, сине-зеленую, синюю и ультрафиолетовую (Панкова, 1957). Опыты Даумера (1956) показали, что их чувствительность к оттенкам в середине этих областей различна.

В спектре цветов, воспринимаемых пчелами, имеются три сравнительно широкие области (желтая, синяя, ультрафиолетовая), внутри которых оттенки изменяются медленнее, чем в двух узких промежуточных: сине-зеленой и расположенной на границе фиолетовой и ультрафиолетовой части спектра. В связи с этим желтая, синяя и ультрафиолетовая приняты за основные цветовые области спектра, воспринимаемые пчелами. При смешивании их концов, то есть желтого цвета (588 мm) с ультрафиолетовым (360 мm), у насекомых возникает новое восприятие, которое хорошо отличается от восприятия желтой, сине-зеленой, синей и ультрафиолетовой части спектра. Эта область, включающая смеси с содержанием ультрафиолета от 2 до 50%, по аналогии с пурпурной областью человека названа пурпурной областью пчел. В ней они различают два оттенка хорошо и пять умеренно. Достаточно примешать к желтому лишь 2% ультрафиолетового, чтобы оттенок желтого для пчел заметно изменился.

Выявилось еще одно цветовое качество зрения пчел — восприятие смесей сине-фиолетового луча (440 мm) с ультрафиолетовым (360 мm) — пчелиная фиолетовая область. В ней они различают очень хорошо три оттенка и семь умеренно. При добавлении к сине-фиолетовому лучу 3% ультрафиолетового для насекомых возникает новый и хорошо отличаемый оттенок.

Итак, можно считать доказанным, что пчелы различают шесть главных цветов: желтый, сине-зеленый, синий, ультрафиолетовый, пурпурный и фиолетовый.

Существуют дополнительные цвета, то есть те, которые при добавлении к какому-либо цвету или смеси цветов позволяют получить белый цвет. Так, для желтого дополнительным является синий, а для сине-зеленого — ультрафиолетовый. Это доказывает тот факт, что после дрессировки пчел на белый цвет, но без включения ультрафиолета, они не могут отличить его от сине-зеленого.

Часто результаты исследования зрения пчел механически переносят и на маток, скорее всего это неверно. Матки и рабочие пчелы имеют неодинаковое строение тела и выполняют разные функции. Так, Таранов (1975) считал, что матка, не посещающая цветки, не имеет такой же способности различать цвет и запах, как рабочие пчелы.

Исходя из важности знания цветового зрения маток, мы решили провести ряд опытов по его изучению. Главная задача — выяснить, существуют ли различия между зрением маток, пчел и трутней. В одном из опытов мы определяли, насколько они отличают синий цвет от других. Для этого на ровной площадке разместили стандартный нуклеусный улей с пчелами, трутнями и неплодной маткой. К передней стенке прикрепили щиток, окрашенный в синий цвет. После того как все особи семьи облетелись, нуклеус убрали, а вместо него разместили два других. Один окрасили в синий цвет, другой — в тот, с которым мы хотели сравнить. В них перенесли пчел и трутней, разделив на две равные части. Таким образом мы создали условия, при которых отличить ульи их обитатели могли только по цвету щитков передней стенки. Выпускали матку, трутня или пчелу в 5 м от летка. Если насекомое цвета щитка не различало, то оно путало место расположения своего гнезда при возвращении. Нуклеусные ульи каждый раз меняли местами, чтобы исключить возможность появления других ориентиров.

С помощью таблицы последовательных граничных распределений для трех уровней значимости (5; 1 и 0,1%) ноль-гипотезы подбирали необходимую повторность и определяли, отличают ли насекомые данные цвета.

Матки отличали все предлагаемые цвета от синего, но с высокой вероятностью ошибки (Р0 = 5%). Темно-зеленый ни пчелы, ни трутни от синего не отличали. Также пчелы не отличали синий цвет от белого.

Известно, что медоносные пчелы воспринимают невидимые для человека ультрафиолетовые лучи. Более того, они ощущают даже небольшое их наличие. А как воспринимают ультрафиолетовый свет матки? Для выяснения этого вопроса поставили нижеприведенные опыты, которые также проводили в сравнительном аспекте с рабочими пчелами.

В темной комнате на арену выпускали пчелу или матку в луч света. У насекомого проявлялась фототаксическая реакция: оно начинало двигаться в направлении его источника. Когда насекомое долетало до середины арены, этот свет выключали, одновременно включали заданный свет, но уже под углом 90° к источнику предыдущего. Если исследуемый цвет пчела или матка воспринимали, то насекомое поворачивалось под углом 90° и двигалось в направлении нового источника света. Использовали интерференционные светофильтры, которые пропускают свет определенной длины волны.

Рабочие пчелы различали все исследуемые цвета (длина волн от 450 до 350 мm), матки (п = 7) реагировали по-разному. Некоторые из них различали все предлагаемые цвета, другие не реагировали на ультрафиолетовую область спектра. В таблице показаны результаты исследования матки №3. На включение ультрафиолетового цвета она отвечала изменением полета в половине случаев. В связи с этим утверждать, что матка его не видит, мы не можем.

Поведенческие опыты не дали убедительных результатов. Поэтому мы решили провести изучение цветового зрения различных стаз медоносной пчелы на электрофизиологическом уровне.

Как известно, пчела обладает трихроматической системой зрения. У них существует три цветоприемника: зеленый с максимумом поглощения 530 мm, синий — 420 мm и ультрафиолетовый — 340 мm (H.Autrum, 1975). Наличие ультрафиолетового цветоприемника у маток медоносной пчелы до сих пор не выявлено. Мы поставили перед собой задачу выяснить, воспринимают ли они ультрафиолетовый цвет, и сравнить с результатами, полученными на пчелах. Опыты проводили в лаборатории Института зоологии АН Украины.

Если один микроэлектрод поместить на роговицу глаза, а другой — укрепить на какой-либо иной части тела, то при изменении освещения будет возникать электрический потенциал. С помощью усилителя постоянного тока его можно увеличить и зарегистрировать на осциллографе в виде так называемой электроретинограммы (ЭРГ). Безусловно, суммарный электрический ответ, каким является ЭРГ, не может дать ту информацию, которую мы получим при измерении спектральных характеристик одиночных фоторецепторов. Но этот способ гораздо менее трудоемок и позволяет оценить границы спектра излучений, воспринимаемых зрительной системой, а при опытах с селективной адаптацией установить и число цветоприемников, их спектральные характеристики (Мазохин-Поршняков, 1959, 1962, 1965).

В опытах использовали метод селективной адаптации. В маленькое отверстие роговицы глаза помещали микроэлектрод, второй размещали в грудном отделе туловища. Закрепленное насекомое облучали опорным оранжевым светом, который имеет лучи в диапазоне видимого пчелиного спектра, кроме ультрафиолетового. Возникало привыкание глаза, и при повторном облучении уменьшалась реакция, регистрируемая на осциллографе. При облучении ультрафиолетовым цветом, к которому глаз не адаптировался, отмечалось увеличение реакции у пчел, что можно увидеть на графике. У маток такого явления не наблюдали, что косвенно говорит об отсутствии у них ультрафиолетовых приемников. На равноквантовые лучи остального видимого пчелами диапазона спектра реагировали как матки, так и рабочие особи.

Возможно, что рецепторы, которые воспринимают ультрафиолетовый цвет у маток, малочувствительны или мешают какие-то другие, не учтенные факторы, но очевидно, их зрение отличается от зрения пчел. Однако эти опыты требуют дополнительного изучения. Можно предположить, что маткам и трутням, которые не вылетают в плохую погоду, нет необходимости видеть ультрафиолетовый свет и иметь такое же хорошее зрение, как у пчел.

Ю.В.ЛУЦЕНКО

Институт пчеловодства им. П.И.Прокоповича,
Лаборатория этологии медоносной пчелы

Поделиться с друзьями

Цветовая шкала пчел складывается из ультрафиолетового, синего и зеленого спектров (340, 440 и 530 нанометров, соответственно). Мир эти насекомые видят примерно таким: пурпурный мак, в лепестках которого присутствует почти невидимый для нас синий оттенок, для них предстает в ультрафиолетовом цвете; сиреневый колокольчик — ультрафиолетово-синим; темно-розовый Иван-чай — синим; бледно-розовый шиповник и белый клевер — синевато-зелеными; светло-желтая чина луговая — зеленой; а темно-желтый рапс — зеленовато-ультрафиолетовым. Конечно, все это наши представления о «пчелиных» цветах. Увидеть мир в подлинных пчелиных красках нам мешает хрусталик, не пропускающий ультрафиолетовые лучи.

Впрочем… В 1923 году французскому художнику Клоду Моне удалили вместе с катарактой хрусталик правого глаза, и он мог различать этим глазом ультрафиолет. Среди его картин последующих лет есть парные пейзажи, очень отличающиеся друг от друга сочетанием красок. Искусствоведы считают, что он писал их при разном освещении. А может, прикрывая по очереди то один глаз, то другой?.. С земляными шмелями на острове Сардиния случилась примерно такая же история, как с микронезийцами атолла Пингелап. Правда, дальтониками они не стали, а, наоборот, обрели способность видеть красный цвет. И стали воспринимать мир в четырех спектрах — как многие бабочки, жуки, стрекозы и мухи.

У бабочек встречаются и более сложные случаи цветного зрения — до пяти спектров, а в глазах присутствуют дополнительные пигменты-светофильтры. Точность в выборе нужного оттенка чешуекрылым необходима, чтобы обнаружить самые свежие и молодые листья для откладки яиц, из которых вылупятся прожорливые гусеницы. По крыльям бабочки иногда можно понять, какие цвета она видит: окраска крыльев определяется теми же пигментами, которые воспринимают цвета в ее глазах. Бывает, что дополнительные глазки возникают на пенисе, и они — видят. А если крылышки самцов и самок заметно отличаются — как, например, у бабочек-голубянок, то потому, что мужские и женские особи смотрят на мир разными глазами. Впрочем, у некоторых птиц цвет по-разному воспринимает даже правый и левый глаз. Теперь, когда стало ясно, что чем ярче выглядят животные, тем красочнее их восприятие мира, достаточно посмотреть вокруг, чтобы заметить яркую раскраску оперенья птиц, крылышек насекомых, шкурок ящериц и лягушек. Им можно только позавидовать. Цветковые растения, подстраиваясь под видение своих опылителей и разносчиков семян, тоже уподобились радуге, причем не семицветной, а невидимой для нас гораздо более красочной. А как же «пышное природы увяданье»?

Долгое время считалось, что осенние краски леса — лишь следствие разрушения зеленого пигмента хлорофилла в отмирающих листьях. Тогда и проступают прежде скрытые желтые каротиноиды. Но красные антоцианины начинают вырабатываться деревьями именно осенью. «Антоцианины выделяются одновременно с фенолами, опасными для листоядных насекомых, таких как тли, — рассказывает о своих исследованиях энтомолог Марко Аркетти из Базельского университета. — А поскольку тли способны отличить красный цвет от зеленого, хотя, видимо, не имеют специальных фоторецепторов, они стараются избежать красных листьев, и дерево освобождается от непрошеных гостей».

Рыбы, особенно обитатели мелководья, разнообразием расцветок могут потягаться с птицами и бабочками — и они различают много цветов. Для цихлид, живущих в больших африканских озерах, разница в цветовом восприятии даже стала основой для дальнейшей эволюции: в озере Виктория бурно плодятся виды с красной чешуей, а в Ньяса — с синей и фиолетовой.

У цихлид зрение, кстати, гексахроматическое: их глаза различают ультрафиолетовый, фиолетовый, синий, сине-зеленый, зеленый и красный спектры. Последний, длинноволновой, лучше других распространяется в мутных водах озера Виктория, поэтому там и преобладают красные рыбы. А в основе изменений окраски, конечно, лежат генетические перестройки, в первую очередь касающиеся генов, кодирующих опсины. Шесть спектральных типов светочувствительных клеток – далеко не предел: у раков-богомолов их 16, и 10 или 12 из них используются для цветового восприятия! Можно только позавидовать, но, увы, даже приблизительно нам не узнать, что видит это членистоногое.

И зачем ему все это видеть? В море длинноволновая (красная) часть спектра поглощается в пределах десятка метров, затем наступает черед средних (зеленых) волн, а глубже всех проникают короткие (синие). Именно поэтому мелководье нам кажется бирюзовым, а открытое море – синим. Спектральное различие между верхними и нижними слоями воды могло стимулировать появление по крайней мере двух разных фотопигментов.

Но для чего рыбам и другим морским обитателям различать красный цвет? Многие обитатели океана предпочитают именно его, поскольку сами флюоресцируют – испускают красное свечение. В столь любимом ныряльщиками Красном море на это способны морские иглы, собачки, губаны, бычки, а также некоторые водоросли, губки, кораллы и офиуры. Голубая стихия, если взглянуть на нее глазами рыб, действительно оказывается красной. Даже в многокилометровых глубинах, куда не проникает ни единый солнечный фотон, рыбы не спешат расставаться с цветным зрением. По красным и оранжевым сигнальным вспышкам рыбы-драконы (стомии) находят своих партнеров на расстоянии в несколько метров. Дальше, увы, не получится.

Одна из подобных рыб – малакост – для восприятия красного света приспособила зеленый пигмент растений хлорофилл, который входит в состав светочувствительных клеток. Хлорофилл малакост получает вместе с пищей – веслоногими рачками, а они, в свою очередь, питаются одноклеточными водорослями. Чтобы при этом не попасть в зубы хищнику, рыбы испускают контрвспышки, искажающие контур тела. А самое дно океана порой напоминает неспящий ночной город: проплывающий ромбовый скат частыми взмахами плавников колышет заросли бамбуковых кораллов, и те полыхают рекламным неоном, среди которого мигают «габаритные» огни офиур, морских пауков и морских лилий. Гигантские кальмары своими гигантскими (27 сантиметров в диаметре, даже у синего кита – в 2,5 раза меньше) глазами на 600-метровой глубине способны рассмотреть кашалота за 120 метров. Потому что, ныряя сквозь облака планктона, этот зубастый кит вызывает свечение микроорганизмов. Удрать кальмар уже не успеет, но сможет встретить врага во всеоружии.

Как понять, что видно, скажем, на глубине 400 метров? Очень просто: прогуляться лунной ночью по лесу. Освещенность в таком лесу в 100 миллионов раз ниже, чем в открытом поле в безоблачный солнечный день. В безлунную, но звездную ночь – еще в 100 раз ниже, как на глубине 600–700 метров. Мы при этом в лучшем случае различаем неясные контуры ближайших предметов – и никаких цветов. А быстрокрылые бабочки бражники, которые вылетают пить нектар в сумерках, и ящерицы гекконы, которые охотятся по ночам, ориентируются на цвет.

«У столь разных приборов цветного ночного видения, какими являются фасеточные глаза бражника и камерные глаза геккона, есть одно сходство, – объясняет нейробиолог Альмут Кельбер из Университета Лунда. – И те, и другие имеют особую клеточную выстилку зеркального типа позади сетчатки. Это зеркальце отражает свет, упущенный фоторецепторами, и направляет его обратно прямо в эти клетки». Поэтому глаза бражников сверкают в темноте, если на бабочку направить луч фонарика. Глаза кошки тоже горят. И в них есть такая же выстилка. Кроме того, улавливать незримый ночной свет ей помогают щелевидный зрачок и близкое расположение сетчатки к хрусталику. Но цвета в темноте кошка не различает.


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *